Fire in Wildland Management

Charles Ruffner
Professor of Forestry
SIUC
11th Annual Meeting
Illinois Forestry Association
Touch of Nature
Sept 30, 2016

Dr. Charles Ruffner, Professor of Forestry

Research & Teaching Interests:

- Fire in Wildland Management
 - Changing fire regimes
 - Applying prescribed fire
- Historical Ecology
 - Fire history
- Disturbance Ecology
 - Old-growth stand dynamics
- International development & Study Abroad

Objectives

- Describe history of fire across Midwestern region
 - Historic role of fire
 - Modern uses of fire

- Major management issues
 - Timing treatments for best effect
 - Interagency coordination
 - Training more crews
 - Funding levels

THE LESS OF THE STATE OF THE ST

- Schoolcraft wrote a vivid depiction of widespread barrens, savannas, and woodlands of the Ozarks
 - many with obvious signs of recent burning
 - "..a succession of hills.. covered chiefly by oaks and without underbrush. A tall, thick, and rank growth of wild grass covers the whole country, in which the oaks are standing interspersed, like fruit trees in some well cultivated orchard"
- Training allowed him to describe unique sites and features w/ lists of plant species and specific comments on native land-use practices

Our regions forest dynamics

- Central Hardwoods
 - Mixtures of white and red oak-hickory on dry uplands
 - Elm, maple, ash, gum, poplar and various oaks on moist bottoms
 - Prairie peninsula

Post-settlement Fire History

- Ozark Hills- burned every 15-20 years (Robertson and Heikens 1994)
- Shawnee Hills- burned every 8-15 years (Fralish 1991)
- Shoal Creek- burned every 2.81 years between 1880-1940 (Harris 2011)
- Post 1940- effective fire prevention, detection, and suppression activities reduce ignitions
- No large fires > 1950

Land Use History

- Fire was widely used by farmers and landowners to clear land & reduce slash
- State Forester (Miller 1910) reported frequent fire being the most important factor reducing forest cover in southern Illinois
- Upland hill type, Union County, second growth on upper slope, ash, mulberry, and oak, of poor quality due to repeated fires from a nearby railroad.
 - III. Nat. History Survey 1910

Shoal Creek Composite Fire History

Shoal Creek Fire Statistics

Shoal Creek	Sample s (n)	Fire intervals (n)	Mean fire interval (years)	Min. fire interval (years)	Max fire interval (years)	MFOP
All Scarred Class 1887-1946	33	21	2.81	1	11	3.54

Wildfire on Bald Knob near Alto Pass, Illinois - 1920

Post-settlement Fire History of the Central Hardwood Region (1880-1940)

Population vs. fires per decade

Over the past 80 years.....

- Reduced cutting
- Fire suppression
- Reduced grazing

Current Forest Composition

- ±120 yr mixed oak overstory
- 60-75 yr of woody encroachment
- Oak being replaced by beech, winged elm, red maple
- Loss of
 - Open condition and high light dynamics
 - Grassy-herbaceous understory
 - Unique and valuable habitat

Bringing Fire Back

Fire in Managing Oak Ecosystems

Woodland

The ultimate outcome we desire of our lands directs what role fire plays in management. Fire to favor oak regeneration in a forest with timber values is very different than fire for restoring open woodlands and grassy savannas.

Modern Uses of Fire on the Landscape

- Woodland habitat management
- Prairie/pollinator maintenance
- Conservation Reserve Program
- Invasive species control
- Site preparation/clear understory
- Species composition control
 - Oak restoration and maintenance

• Forest Management Treatments:

- Thin from below:
 - Reduce undesirable species in midstory
 - Chainsaws and stump treatments must be used for effectiveness
- Rx burns to follow:
- Reduces density of shade tolerant stems
- Reduces Coarse Woody Debris (CWD)
- Recycles nutrients, stimulating mast crops
- Rejuvenates successional sequence
- Stimulates resprouting and herbaceous species
- Increases structural complexity
- Increases biodiversity and landscape mosaic

Herbaceous Response to Thinning and Burning

Rattlesnake master

Understory composition from Dixon Springs Plots 2014.

Top five species for each treatment

Treatment	Species Species	Cover (%)
Burn only	Virginia Creeper	18
	Japanese	15
	honeysuckle	
	Poison Ivy	9
	Raspberry	6
	Grapevine	5
Thin only		
	Virginia Creeper	24
	Japanese	7
	honeysuckle	
	Poison Ivy	7
	Wild Licorice	3
	Bromegrass	2
Burn and thin		
	Virginia Creeper	38
	Japanese	24
	honeysuckle	
	Poison Ivy	14
	Grapevine	4
	Garlic mustard	2
Control		
	Poison Ivy	21
	Virginia Creeper	12
	Japanese	8
	honeysuckle	
	Raspberry	4
	Tick-trefoil	3

Stand Dynamics

Table 1. Mean (S.E.) of overstory basal area, stem density, and stocking by treatment of the three forested stands used in this study. Stocking was calculated using Gingrich [15] upland stocking guide. Means are post treatment and were separated by Tukey option for post-hoc comparisons when ANOVA revealed a clear difference between treatments (P < 0.05).

Treatment	Basal Area (ft²/ac)	Density (stems/ac)	Stocking (%)
Control	104 (11) a	160 (14) a	90
Burn	113 (10) a	155 (7) a	95
Thin	105 (18) a	90 (10) b	82
Thinning and Burning	74 (11) a	102 (9) b	63

Means followed by same letters do not differ significantly (P < 0.05).

Facilitating Oak and Hickory Regeneration in Mature Central Hardwood Forests

Eric J. Holzmueller *, John W. Groninger and Charles M. Ruffner (Forests 2014)

- GLO data suggests thinning stands necessary to restore woodland structure
 - Forestry Summer Camp field exercises 2008-present
 - Students cut non oak-hickory stems (crop tree release)
 - Apply stump treatment to reduce stump sprouting
 - Use stocking guides to develop stand structure targets
 - 35-75 sq ft Basal Area with about 40-60% stocking
 - Average tree diameter <u>+</u> 14-18"

There is hope for oak regeneration

Table 2. Mean (S.E.) height and diameter (of the tallest seedlings) and density of all large seedlings (>20 cm in height) by species class and treatment. Means were separated by Tukey option for post-hoc comparisons when ANOVA revealed a clear difference between treatments ($P \le 0.05$) for each species class and treatment.

Species Class	Height (m)	Diameter (cm)	Density (stems/ha)	
White oak		_		
Control	0.16 (0.04) b	0.19 (0.05) b	2552 (549) b	
Burn	0.17 (0.03) b	0.19 (0.03) b	5469 (1271) ab	
Thin	0.23 (0.05) ab	0.28 (0.06) ab	4010 (1232) ab	
Thinning and Burning	0.38 (0.07) a	0.47 (0.09) a	7135 (1820) a	
P-value	< 0.001	< 0.001	0.05	
Red oak				
Control	0.18 (0.04) b	0.23 (0.06) c	1493 (327)	
Burn	0.19 (0.04) b	0.26 (0.05) bc	2162 (394)	
Thin	0.35 (0.07) ab	0.53 (0.11) ab	2471 (448)	
Thinning and Burning	0.43 (0.09) a	0.58 (0.13) a	2420 (485)	
P-value	< 0.001	< 0.001	0.25	
Hickory				
Control	0.12 (0.02) b	0.15 (0.03) b	2471 (499)	
Burn	0.21 (0.04) b	0.29 (0.06) ab	3568 (523)	
Thin	0.37 (0.05) a	0.44 (0.06) a	4221 (471)	
Thinning and Burning	0.40 (0.06) a	0.39 (0.06) a	3346 (502)	
P-value	< 0.001	0.003	0.06	

- Thin and burn had a larger residual diameter which supports our thin from below suggestions
- Thin and burn resulted in more oak regeneration than other treatments
- A two cut system would work nicely in these stands now that advanced oak regen is present
- Continue to use maintenance fire to enhance oak response and hinder other less fire tolerant species

Restoring fire as a process

- Variation in burn intensity is encouraged and will reflect differences in topography, vegetation, fuel moisture and weather conditions at the time the flame front crosses an area
- This more likely reflects native burning as they weren't worried about a uniform burn to meet even-aged regeneration objectives
- Burning should occur at different stages of stand development, not just at times that would satisfy or support timber objectives
- There is a stand down period for all oak stands after a strong cohort is formed; keep fire out until they recruit into overstory through crop release or other weeding cut
- Use natural features to delineate burn units, as opposed to cutting FMU boundaries along property boundaries
- Train crews to protect sensitive, high value species; target those otherwise
- Burn at different times of the year if possible to limit development of a superdominant vegetation type or condition

Oak Woodlands and Forest Fire Consortium

- Program funds scientific research on wildland fires and distributes results to help policymakers, fire managers and practitioners make sound management decisions
- Regional Fire Consortia serve as clearinghouses of current fire knowledge and application materials
- www.Oakfirescience.com

Illinois Nature Preserves Commission

- The mission:
 - assist private and public landowners in protecting high quality natural areas
 - habitats of endangered and threatened species; in perpetuity
 - promotes the preservation of these significant lands
 - provides leadership in their stewardship,
 management and protection

Certified Prescribed Burn manager program

- Train more apprentices

Burn 10K+ acres annually across multiple divisions

- Unique area maintenance
- Nature Preserves
- Oak regeneration
- Habitat management
- Growing season burns

Ageing personnel not being replaced in timely manner Many lands go untreated

IDNR

Illinois Prescribed Fire Council

- Recent Fire Needs Assessment suggested:
- Of 1,049,000 acres reported, 790,000 (76%) are held in habitat acres, of which only 50,789 (6%) were managed with prescribed fire between 6/14-5/15
- 213,000 more acres must burn annually in Illinois to effectively manage and restore target acreages
- 20% of conservation lands are too degraded to carry effective, healthy, needed fire
- Without committed and supported conservation efforts, these numbers will increase over time

SIPBA working with Private Landowners

- fostering a stewardship ethic
 - Involves them in actively managing where effects are noticeable over time

 Provides satisfaction thru land enhancement and investing in future health and productivity across generations

SIUC- Fire Dawgs

- Integrates Federal oriented training
 - Wildland fire crew conducts prescribed burning for agencies, landowners, and SIUC
- SIUC Forestry Department-
 - fits mission of undergraduate forest management & ecological restoration
 - Important qualifier for job placement of students
- Cooperating Agencies:
 - IDNR, Foresters and Natural Heritage
 - Shawnee RC&D
 - Crab Orchard NWR
 - Shawnee NF
 - Rural Fire Districts

SIUC-Forest Resources Management

- Manage forest resources on public and private lands
- Develop strong outdoor/field knowledge and conservation skills
- Habitat and vegetation management, ecosystem restoration, Rx fire operations

Work for Future

- "Fully" integrate efforts across multiple ownerships
- Increased attention paid to smoke management
- Research Fire and Invasive Exotics??
- Public outreach and acceptance of wildland urban interface in our region

Questions?

Fire Suppression coupled with Farm Abandonment (1930-Present):

- Badly eroded and cutover lands purchased in 20's and 30's for parks and forests
- Cessation of fire accompanied by development of national and state forests
- Permitted major increase of mixed-mesophytic component into current understory
- Illinois Ozark Hills may be first contiguous forest region in central North America to convert from oak-hickory to maple-beech (Fralish and McArdle 2009)

Trainings

"Red-Card" firefighter training

- Chainsaw Safety
- Fireline Construction
- Ignition Methods
- Direct/Indirect Attack
- Yearly Refresher

• Fire shelter deployment

Post-settlement (1820-1930):

Archaic and Woodland nauves cleared forest gaps and burned them to maintain

small garden plots increasing oak, chestnut, and pine in surrounding forests

Delcourt et al. 1998

Agricultural clearing alters bottomland hardwood fire regimes

- Pre-settlement forests were cypress-tupelo-gum according to GLO records
- •Post-settlement drainage and land clearing for agriculture (xerification) were associated with increased fire frequency and transition to mixed oak forest
- •Mean fire interval (MFI) for the study period (1895-1965) was 1.73
 - minimum interval of 1 year and a maximum of 9 years
 - Weibull median percent interval (WMPI) of 1.04 to 3.18

Mixed oak fire regimes

- fire return intervals vary across biome & range 2-24 years
- Buell 1954- Mettler's woods, NJ mean fire return interval of 14 years (1641-1711)
- Guyette and Cutter 1991- Missouri Ozarks, Native American period (11.96 yr) versus Euro-American period (3.64 yr)
- Shumway, Abrams, Ruffner 2001- western Maryland, presettlement fire free interval of 7.6 years

